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NOMENCLATURE

- a- wave amplitude :_-:Zi-i:f

:. a - see eq. (3.1.2) .-.

_ AGE,T) - see eq. (2.1.8) b

2 AI(E,Tj - see eq. (2.1.52)

L:-' b - see eq. (B.3d)
b - see eq. (3.1.3) o _ 4 ,
Cp - phase velocity - see eq. (2.1.36) ‘ ' ’
Cg - group velocity - see eq. (2.1.28) ll l 1
c - see eq. (2.3a.5) {A",\ '! L ;:::;:;::
c - see eq. (3.1.4) " -
;1,::2 - see eqs. (B.l), (B.2) i
c - see eq. (B3.a) ,
cn - Jacobian Ellyptic Function - see eqs, (C.15) :f_
cd - Jacobian Ellyptic Function - see efter eq. (C.12)
d - see eq. (B.3b) ;:::::::::
dn - Jacobian Ellyptic Function - see eqs. (C.15) :::
D(E,T) - see eq. (2.1.19) '\
Dn(X) - see eq. (3.1la.l}
e - see eq. (B3.c) o .
E(£,T) - see eq. (2.1.23)
E,E(p,r)- Ellyptic Integrals - see Byrd and Friedman (1971) .;;; ’:'t-f
F(E,T) - see eq. (2.1.22) :'ﬂ_
F(p,r) - Ellyptic Integral - see Byrd and Friedman(1971)

£f(r,z) - see eq. (D.1) AT




8- gravity constant
G(,t) - see eq. (2.1.20)

Gl’GZ - see eq. (2.3b.4)

N h - still water depth
h - water depth
i- complex unity

I(P) - see eq. (3.1a.6)

J.,J.,,J,- see eqs. (3.1.12),(3.1.13),(3.1.14)

127273
k - carrier wave number - see eq. (2.1.8)
k- wave number - see eq. (2.3a)
K(P) - see after eq. (C.18)
21 - wave length, see eq. (3.1d.1)
Lz - group length, see eq. (3.1d.2)
L4 - 'supergroup length' - see eq. (3.1d.3)

M(E,T) - see eq. (3.1.21)

P - see eq. (3.1.17)
p - see eq. (C.19)
q - see eq. (C.17)

Q (E) -~ see eq. (2.2.5)

QI(E) - see eq. (A.2)

Q,(E) - see eq. (2.2.9)

r - see eq. (B.4)

r' - see eqs. (C.15)

sn - Jacobian Ellyptic Function - see eqs (C.1l4)

t - time




T -~ dimensionless form of t.
in section (3.1) - see (3.1.17)

in section (3.2) - see (3.2.5)

U - horizontal velocity

u - dimensionless form of U - see (3.2.14)
vV - vertical velocity

v - dimensionless form of v (see (3.2.15))
w(x) - see eq. (D.9)

X - horizontal coordinate

X - dimensionless for of £

in section (3.1) - see eq. (3.1.17)

in section (3.2) - see eq. (3.2.5)

y - see eq. (B.5)

z - vertical coordinate

z - see eq. (B.6)

Z- dimensionless form of z

in section (3.1) - see after eq. (3.le.l)

in section (3.2) - see eqs. (3.2.5)

ZJ(p,r) - Jacobian Z function - see eq. (C.25)

a - see eq. (3.1.10)

@ ,8, - see egs. (2.2.13),(2.2.14) g;;i
@ - see eq. (3.2,.13) :;5;;
B - see eq. (3.1.10) SN

81,82,83 -see eqs. (3.5),(3.6),(3.7) :é;?;

-
'-".l
L
L
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Y - see after eq. (3.1.1)
14Ty ..~ see eqs. (A.8),(A.9)
s - see eq. (C.24)

€ - see after eq. (2.1.4)
g - free water surface

Losbpakg7.See eq. (2.1.7)

tn (E,t), m3l, j>m - see eq. (2.1.10)

- see eq. (2.1.17)

6 - see eq. (2.1.8)

Aj’ j=1,9 - see eqs. (2.1l.43, to (2.1,51)
u(g) - see eq. (3.1.9)

Mys j=1,6 - see eqs. (2.1.43) to (2.1.51)

£ - see eq. (2.1.15)

o - see eq. (2.1.26)

; - see after eq. (2.3a.4)

T - see eq. (2.1.15)

€ - see eq. (2.3c.6)

Q- see eq. (C.30)

¢ - induced velocity potential

¢°,¢1,¢2 ....—see eq. (2.1.16)
¢md(£,r,z), m)l, j)m - see eq. (2.1.9)
¢10,¢20 - see eq. (2.1.11)

- dimensionless form of ¢10 - see eq. (3.2.5)

<! o

- wave envelope




R

dimensionless form of @

in section (3.1) see eq. (3.1.6)

in section (3.2) see eq. (3.2.95)

stream function

dimensionless form of V¥

in section (3.1) see after eq. (3.le.l)
in section (3.2) see eq. (3.2.16)
carrier wave frequency - see eq. (2.1.8)

vrave frequency - see after eq. (2.3a.4)
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1. INTRODUCTION AND ACHIEVEMENTS

- The shoaling of weakly nonlinear surfave wave groups is important to

the understanding of coastal wave climate and coastal flow regime.

In the past, most efforts concentrated on the equally important

though simpler problem of shoaling of wave-trains (i.e. monochromatic

wave groups), for details see Stiassnie & Peregrine (1980).

The first mathematical formulation for shoaling of wave-groups
was given by Djordjevic' and Redekopp (1978). This formulation is
limited to cases where the water depth is small compared to the group-
length. Equations suitable for water depths of the order of the group-
length are deduced in Peregrine (1983); combining the constant depth
model by Davey and Stewartson (1974) and the higher-order model for

infinitely deep water by Dysthe (1979).

The only available solutions are those for the shoaling of
isolated wave-packets (solitons), which were originally given by
Djordjevic' and Redekopp in their 1978 paper. They predict that a
soliton envelope can undergo fission only if it propagates into
deeper water, 3y heuristic assumptions for the evolution along the
slope, they also estimate the number of solitons emitted after o
single soliton descends from a shallower shelf. A more recent study,
Turpin, Benmoussa and Mei (1983) confirms these results qualitatively,

but not quantitatively.

To the best of our knowledge, no results for shoaling of wave
groups (i.e. modulated wave-trains) have been presented so far., These

modulated wave-trains are of particular importance since almost every
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. wave-train will eventually become modulated due to its intrinsic

; Benjamin-Feir instability. The main goal of the present study is

& to throw light on the evolution during the shoaling of a modulated
wave-train and its influences on the mean free surface and the wave-

- induced mean flow.

The bulk of this work is divided into two parts: the

derivation of the appropriate equations (inchapter 2), and their

solutions (in chapter 3).

The use of the REDUCE 2 algebraic manipulator enabled us to
derive evolution equations which are accurate to fourth order. These
equations are valid for any water depth, (except the extremely shallow),
as long as the slopes of the bottom are sufficiently mild. Note
the nonlinear effects on shoaling surface gravity waves in extremely
shallow wacer are discussed in a recent paper by Freilich and Guza

(1984) .

Two new results are presented and discussed in this report. The
first is an approximate analytical solution which provides detailed
information about the physical processes involved in the shoaling of
wave-groups. The second result is the calculation of the induced mean
flow accompanying an evelope-soliton moving on infinitely deep

water.

The attempts to include the effects of randomness into our
models have not yielded any wortwhile results. It seems that the very
recent work by Longuet-Higgins (1984) should provide a good starting

point for any future work in thig direction.




. 2. DERIVATION OF THE EVOLUTION EQUATIONS

2.1 Fourth Order Evolution Equations

The third order evolution equations for groups of water-waves moving
over an uneven bottom were first derived by Djordjevic' and Redekopp
(1978). These equations are valid only if the water depth h is of the

same order of magnitude as the wave length £ In the present section

1
we carry their derivation one step further, to fourth order and

introducing a slight modification, we obtain a more general set of
equations which is valid when O(h/ll) > 1. All the algebraic mani-

pulations were performed utilizing the REDUCE 2 algebraic manipulator,

see Hearn (1973).

We consider the evolution of a uni~directional progressi-e
grativy wave moving along the x axis on the free surface of a homogeneous
liquid with depth h = h(x) varying in the direction of the propagation.
The effect of surface tension is neglected, so the analysis applies
to gravity waves only. The fluid motion is irrotational, thus there

exists a velocity potential ¢(x,z,t) satisfying Laplace's equation

¢xx +¢,, = 0 (2.1.1)

where z is the vertical coordinate, and z = 0 is the undisturbed free

surface.
The boundary condition on the bottom z = -h(x) is

¢, = -h'(x) ¢ (2.1.2)




and the boundary condition on the free surface z = [ (x,t) are

the kinematic condition:

6, =C, * L (2.1.3)

and the pressure condition
2 2
2g; + 2¢t + ¢x + ¢z 0 (2.1.4)

The situation where the depth varies slowly in the direction of
propagation is considered, so that properties characterizing the wave will
change slowly as well. A small nondimensional parameter € that measures
the slope of the wavy surface is introduced, and we define the new

variables

X
- _dx__  r e 2
T =¢[f Cg(s) t] 5 £ = e2x (2.1.5)

where Cg is the group velocity.

We suppose that the depth changes on the scale of €2 so that

h = h(Z) with the property h'(£) = 0(1).

The velocity potential and the free surface displacement are

expanded as follows:

b = b (E,1,2)+8, (5,1,2) %40, (£,1,e% %, L 4eicl  (2.1.6) e

AT 1

t = ¢ (6,0+c (g, 0e g, (£,0e %, re.c) (2.1.7) L

' RS

x Seav e

where 0 = f k(£)dx - wt (2.1.8) R
R

and c.c means complex conjugate. D,
o
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With € chosen to be small, the functions ¢j(6,r,z) and
Cj(E;T) for j > 1 are expanded formally in powers of € as follows: Eiiﬁf
0(5,7,2) = T €% (5,T,2) (2.1.9)
m=J e "
&0 = I emcmj(a,r) (2.1.10) ;EEEE
m=j S
The induced mean flow potential ¢  is written as ol
b, (x,2,t) = € ¢ (E,T,2) + €2 4,0 (E) e (2.1.11)
where 0(¢10) s 1. Sl

Substituting the Fourier series (2.1.6) into the Laplace

equation (2.1.1) we obtain that the zero order potential satisfies: "»“fj

V2¢o(5,t,z) = 0 (2.1.12)

From (2.1.11) and (2.1.12) it follows that:

o, (5,1,2) < 0(e?) (2.1.13)
A A

Expanding the free surface conditions (2.1.3) and (2.1.4)
around the equilibrium position z = 0, substituting eqs. (2.1.6) to

(2.1.10) and looking for the coefficient of e°, yields respectively:

6.0 + 7 +22eRelz, by .0, +24 . —
10 o ell 1991 o141ttt T
z 22 zz g T :

T
2 *x ik x 2k by o T
LT c, c114’11T kg 165,] + 0(e™) =0 (2.1.14) e

and R
2 2 % 2 * * DR

Ll - - E- 2 3 NN

S = 5 tio_ ey [im¢1lzc11] — [k ¢11°11+¢1lz°113+°(e ) (2.1.15) R




where ¢,, = ¢10(€,T.0). ¢ij =

¢ij

conjugate.

(E,t,0), and * denotes the complex

From (2.1.14) and (2.1.15) it follows that the order of Co

and ¢10 (o) are greater or equal to €2
z

2y, 2
¢lnz(o) £0(e%); g s 0(e9)
We introduce the notation

= g2
5o = ¢ %0

The next step of the derivation is similar to that given by

(2.1.

(2.1.

Djordjevic' and Redekopp with the difference that we continue the

16a,b)

17)

process to fourth order. Substitution of (2.1.6), (2.1.8) and (2.1.9)

into Laplace's equation (2.1.1) gives:

16,

HOL

- cosh k$z+h2
$11 A(g,T)

cosh k h

1A

cosh k(z+h) 't

0(e2)el?: ¢y; = D(E,T)

(z+h) sinh k(z+h) - ho cosh k(z+h)

cosh k h

C
-4

2.1.

cosh k h

0ged)ell: 6, = G(E ) Soh ki)

cosh k h

R S
2 cosh k h

* (z+h)cosh k(z+h) +

iho
-AE E:— AT

T

g

c

i

cosh k h

(Kn'ar(k'A - 274 ) (z+0) }+
g

{o(hk)'A -

(2.1.

18)

19)

- %—}DT-(z+h)s1nh K(z+h)  (2.1.20)
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¢41 = M(E,T) cosh k(z+h) +

cosh k h

i 347 sinh k(z+h)
+ =2 2 Sinh Xtzvh) _
[ AT ] cosh k h

6C TT
g

- %%—AT][(z+h)
g

cosh k h

T
_ _léh_ AT(z+h)2 sinh k(z+h)
g

+i=t— ((kn') [30-2kh(202-1)] + Kkh'o - hk'o-

2KkC
g
c! 2 '
- . B, 207 k' ha, _
2kho G +T~—o’zk}AT+CA‘tE
g g
2 16
102 k' T,. sinh k(z+h)
T-0Z x D-il¢ c, (z+h) R
t
1 '462 t ' Eﬁ 3
Hmﬂt?kmmk+ncm;
g g
iho A D

- _&r "t ik 2 cosh k(z+h)
ZEZ Arrr cg ZCE 2 D} (z+h) cosh k h +

_h' Ciumt cosh k(z+h)
+{ Cg .(1 kho)A -ikh'D} (z+h) wosh k b

- cosh 2k(z+h)
%22 = F&D) Cooh 2 k

cosh 2k(z+h) iFT

03 =BG, Geh 2 kb " c,

- (z+h) sinn 2E(ZHh) (2.1.23)

cosh 2 k h

where A,D,G,F,E, and M are yet unknown functions.

(2.1.21)

(2.1.22)
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Substitution of eq. (2.1.6) to (2.1.10) and eqs. (2.1.18) to

(2.1.23) into the expansion around z = 0 of the free surface conditions

(2.1.3) and (2.1.4) gives:

iw

i0, _
0le)e S R (2.1.24)
and
w2 =gko (2.1.25)
where ¢ = tgh(kh) (2.1.26)
24,0, -1 _ _ k2,02
0fede : %0 = 3 *10r b0 - 5 Al (2.1.27)
0ge2)et?; ¢, = 50 [otkn(1-0%)] (2.1.28)
and
8Ly, = 14D + A (2.1.29)
0152 eZie. gc = - -153- (3-02) AZ (2 1. 30)
=_==L===' 22 2 o .
and
et
® F -2—1k2 (-0%) ,2 (2.1.31)
02
Oe3eie' WA 4u A + U A+ 1A +
=$======. 1 2 E 3 TT 4 10"[
2 - .
+ uslAl A+ ugb,0h =0 (2.1.32)
where
2
uy = - l—fa-z%l[cmk(l-oz)] +(hk) '} (2.1.33)
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. 2wiC
uz [ ——-&g (2- 1-34)
1 [ gh 2
uy == [1- (1-kho) (1~02) ] (2.1.35)
g 2
g
2. ¢
p, ==—[2-2+ (1-6%)] ; c_ = w/k (2.1.36)
4 g Y P
g
He = K 2 - 12 + 1302- 20%] (2.1.37)
5 28 52 T
2
by = 290K (1-a2) (2.1.38)
2
g
and
who iwko ik
gly) = 106 + (L4 TR+ — - ) ¢, A+
g g T
2
+ 180 202 1)A +hwoa, -
2 Tt €
2C
g
u -
-1k (390241104 - 209}a2K +
2002
+ —*1‘23 [2kh' + k'h - 202(kh)'] A (2.1.39)
3y 218, A Uyna2_ -2
0(a3)er : o7 E Zuc [3kh(30*+20%-5)+490(1-0%)] A A_
+ .6_1.1;_0‘\. (I—GZ)AD (2.1.40)
and

85, = K [ 12Kkh(1-02)-403+120] A A,
4C863

2
-k (3-02)ap (2.1.41)
g2

~~~~~




where
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2 25
WD + D, + UgD u4n¢101+ ZuSIAl D + u A%

*uebygD + MA LA+ A3IA[2AT+ A4A2KT +

M I s 2 T . 2T
TT T £

-2 _
+ € A9A¢10 0

2z
Biseee s are given by (2.1.32) to (2.1.33) and

lEZ
- - BE— andicdeT-6n%i0S+6n %303 203 -
4w“C
g

M

- 5h2k205+9h2Kk20"*~5h2k202+h2k2+ 4hko®-

-4hka3 - g%4+02)

2 2
= }L_(_]':E—L [_3o'+kh(3o'2_ 1) ]

A
2 33
g
3
Ay = AR (767-4705+4803-360+kh [-708+3206-
2 3
gCao
g
-250'-180%+18] _
o _ikd b c 2 0232
A, ZaC {-o"+50%4+kho (1-0%)*}
g
_ 2
A = Zhél 9%) (1-kho)
2
. = duwks  2ik 1w
6 2 gC

CZ
g g g g

(2.1.42)

(2.1.43)

(2.1.44)

(2.1.45)

(2.1.46)

(2.1.47)

(2.1.48)

et e B «
PN I L
cdhnded b A A A&
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2C
il ,
A, = - g—c‘- =2 +2l1-kho1(1-021 +2} (2.1.49)
g g
2w
EL (2.1.50)
iokw
)\9 = - —é-—— (2- 1-51)

Combining eqs. (2.1.31) and (2.1.40) and introducing the new variable

A1 = €A+ €2D

one finally obtains the modification

SchrBdinger equation

lJlAl + UZAIE + 113A1
TT

+ ugh 655(8) + ex1“1T

1
— 2_
+¢ A ATA. + €A A
471 1T 5 1ET

1

+ AgfAbyg € *oh1t10, = O

£

(2.1.52)

to fourth order of the cubic

+ u4A1¢191 + € u5|A1l A1 +

+ eXZAl

-1
+e )\SlAIIZAl +
TTT T

+ X cA ¢ + EAA, ¢ +
6 1 10TT 7 1T IOT

(2.1.53)

On the other hand, substitution

of (2.1.18), (2.1.24) and (2.1.11)

into (2.1.14) and (2.1.15) and elimination of Ty yields the following

equation for ¢10:

e? .__Esz[EEP. 2y¢|a *+eA*D}
- = - 4
¢1oz+ z 10t g C, +(1-0%) J{| A|3eAD*+eA*D}
_2_9 3 0 27_.3[_ iw " 2iwks - 2ik AA* —A®A - +0(E!‘)
* g € 13 [klA’ J-e3l gcg g2 gCg][ TT TJ
(2.1.54)
which can be written to the same order of accuracy as:
eﬁ.ﬂu RZ[EEP_ 1-62)1(|A, |2)_+ 22
= = + (1- =€
z g
3 T 2iwk 0 2ik
. 2 - I- - A A% =A%A
f [kIAIF] E[ gC2 + g2 gC ][ lAll’T Al l-m-]

g

g - - o=




Laplace's equation (2.1.12) and the boundary conditions (2.1.2) at
z = -h and eqs. (2.1.51), (2.1.53) at z = 0 form the system of equations

from which A1 and can be determined.

10
For the case of Infinitely deep water, as it will be shown later,
the induced flow ¢o is of order €2, For this case equations (2.1.55) and

(2.1.53) become respectively:

_4_k3 2
b0 = 5 (81D (2.1.56)
YA T
and
A
2wicC 1
- TT -+ 2wk
— A+ + A, +
lg g g6 1 10
e A la, |28, + ¢ 10 142D, (24 4
g 1 1 gC 1 1
g T
$ 263 gy Flek (2.1.57)
g€, 11, g 1°10, e

The last two equations are identical to those given in

K.B. Dysthe (1980).

Note that the following typographical errors were found in Dysthe's

paper:

His equations (2.17) and (2.19) should be written (in his notation) as
follows:
= L 24011 3 — Ak - 3 2 O
[ = 4k*[A[2+81k3 (A% - A%A )-41ik |AlZ +2uk (3 -1 )
(Dysthe 2.17)

1A -alafz= - 1 -
21(At+&;Ax)+11Ayy A AlA| 5 1(6Axyy ALt

+ S1a(an%-A%A )35 A} 24 +A(F 13 ) (Dysthe 2.13)
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2.2 Third Order Evolution Equations

Equations (2.1.32) and (2.1.55) constitute the following third

order set of evolution equations:

2 =
WA+ AN A+ u4A¢lor+ uglAlZA + uhs,g = 0 (2.2.1)
and 2
) ¢lort e2Kk2 2C
¢ + = [ +(1-a2)] ([A[® (2.2.2)
loz g g Cg .

Shallow water

For shallow water, we assume that the horizontal induced current
is uniformly distributed with depth; and then integrating equation
2.1.1) yields
( )y 24,

Tt
¢102 = ——Ez———— (z+h) (2.2.3)

Substituting (2.2.3) for z=0 in (2.2,2) vields

¢ fe h + .l) = g LZ. [i(ig +(1_02)1(1A‘2) (2.2 4)
10 v TeZ T g g C o

T g g T

integrating (2.2.4) with respect to 1 gives

A

2¢

0., = ————— [ +(1-a2)] [A]2 + Q(B) (2.2.5)

0. a- %lz}—) ¢
g

The set (2.2.1) and (2.2.5) is the same as that given by Djordjevic'
and Redekopp (1978), except the term u6A¢20(g) which does not appear

in Djordjevic and Redekopp.

'
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In the sequel we will show the necessity of including the term

ez¢20(£)t in the wave-induced mean current expansion (see (2.1.11).

To second order in € the wave induced mean current velocity is given

by
e2 k2 2C, ) €2Q(£) .
U=cedy, = — [2 + (-0 )11A[2 +——°-55—C (2.2.6)
x C (1- &) g g
g Cg

To find Q we introduce a lateral boundary condition of zero
averaged (over 1 ) mass flow which is appropriate for an impervious

beach, as follows:

h O+ 2k 2 A2 (2.2.7)

where the bar indicates the averaging.

From eqs. (2.2.7) and (2.2.6) we obtain

2wkC 2 2C
Q) = ~ |A|2{—¢2 ""_ILT[‘EE + (1-02) ]} (2.2.8)
& -8 %
g

Integration of eq. (2.2.5) with respect to T yields

K2 2C
6, = ————— [ —R +(1-02)] / |A]Z dt +Q(E)T + €Q,(E) (2.2.9)
10 _gh C 2
(1- —24#) 4
C‘.

The first and second terms in (2.2.9) grow monotinically, and
boundlessley in time. Secular terms of this nature are bound to cause
trouble in higher order derivation and should be suppressed. The addition of
the term ez¢20(€)t, to eq. (2.1.11) seems to be the proper way to

achieve this goal. Substituting eq. (2.2.9) into (2.1.11) gives




X 2 t
ce2 K2y oty 0 [ Al fq2 TR e TaTE
X g o

¢ ———————
° (1- %tzl) Cq
g

Q

X
+e2Q (f Lo+ 20,0 + ey (02 (2.2.10)
.xOg

Thus suppressing secular terms in t we get
2C
K[ -2 + (1-aH)]

£
(1- £
g

2wkC

+Q=--—grg Tal?

(2.2.11)

8y (E) =

Finally, substitution of eq. (2.2.8) for Q, and (2.2.11) for
¢20(S) into equation (2.2.1); and introduction of the new variable
Y = Z§ €A lead to the following nonlinear SchrBdinger equation for the

~

wave envelope ¢ .

g - - c." - e?ay o~ -
2C_ 3¢ v+ iwi M 2C§ wtr - c IW[ y=
g g g
GZ -2 -
=5 ¢ ;Z v (2.2.12)
g
where
_ k3 9th*(kh)-10eh? (k)+9 _ g2k gke ok .
*1 7 2% 8th3 (kh) 2% | 2sh(2kh) gh—(Cg)z

gh__ . BCq gk? (2.2.13)
- (25h(2kh) %0 ) 2w{gh-(cg)2]cﬁz(kh) e

g, - KR gk S
%2 1~ 2gh ~ 4wsh(2kh) ch? (kh) 2u

. 9ch“(§:;;22;?2(kh1+9 (2.2.14)
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where a = [&l (2.2.15)

Equation (2.2.12) will be rederived in section (2.3) by means of the

Whitham equations.

2.3 Third Order Equations Obtained from Whitham Equations

We consider here the case of shallow water and recover the
nonlinear SchrBdinger equation (2.2.1) by using Whitham's modulation

equations.

(2.3a) Modulation equations

Considering the 2-D problem of wave-groups propagating over water of
slowly varying depth, the following five unknowns are usually chosen as
dependent variables: the wave amplitude a, the wave frequency ; .
the wave number i, the average water depth i, and the current velocity U.
To determine these inknowns we start from Whitham's set of modulation
equations, Whitham (1974), p. 556. Pseudo-phase consistency relation:

g” g (h-h) +——3——— 2 4 0(e")]=0 (2.3a.1)
t 2sh(2kh)

Mass conservation equation:

a(l;th) [h U+ .g__ 2 + o(e'-t)] (2.38.2)
2g
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Wave-action conservation equation:

2 ~ 2
3t BE+ 0] + 2ot £ 4 0(eM]

= =0 (2.3a.3)
o [c3
Consistency condition: )
3k | 3w -
5{. + _5_)2 =0 (2- 38-4) )

where g = [gk th(ich):]Li is the linear dispersion relationm,

o' = 30/3k, and ¢ is a typical wave steepness, ¢ = 0(ak).

Following Whitham (1974), p. 562 and including higher order

dispersive terms, see Whitham p. 526, (which arise from the quadratic

part of the Lagrangian L = g ~g), the dispersion relation is

given by:
- ~ - ) - i a2 :
o= o4k +—BE (pn) + BEC o 8 373 504 (2.3a.5) R
25¢h2 (kh) 20 2 5x2 T
here C = (9th% (kh)- 10th2 (kn) +9)/8th3 (kh) »

Here, and in what follows, we assume that the small modulation
parameter ¢ is of the same order of magnitude as the typical wave
steepness. We also assume, as we did in section (2.1), very mild

depth changes, having slopes of the order of ¢2 at most. lff%}'

(2.3b) Induced Mean Flow_

To make the slow variation explicit and to facilitate the

derivation we introduce the same multiple scale variables, T and £

as given in section (2.1) by (2.1.5).
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Rewriting eqs. (2.3a.3) and (2.3a.4) with the new coordinates

(2.1.5) and averaging them over t gives:

iﬂ. g2 = const; = B; w = const, = g (2.36.1)
g

Here we assume that the behavior of the solution as a function of t
is the same as that of the linear boundary condition at x_ . Namely,
decaying for [t[+ o in the case of wave-packets and with a constant

period in the case of modulated wave-trains.

Again, bars indicate averaging over the appropriate domain in «t
(finite for modulated wave-trains and infinite for wave packets)
and B, w are the averaged wave-action flux and the so-called carrier

frequency, respectively. Note that for wave-packets B = 0,

The carrier wave number k, satisfies the dispersion relation

(2.1.25). B

Rewriting eqs. (2.3a.l) and (2.3a.2) with the new independent %t;:

variables, yields:

-2-— {El- [g(h-h)+ —Ek 2] Ly} +e %E- {g(h-h) + .g::ﬁ-:'
T 2sh (2kh) S
M L (2.3b.2) .
2sh(2kh) ;
g_ fal (h +.£§ a?] -(h-h)} + e-%g (hu +-g% al}= 0 (2.3b.3)
T

g 20 2g i:;u




. Neglecting the second terms in the above equations for the time

being, we obtain:

gkCg a2 h G{+C G

- kh
h-h = - (B, 78 + 52 (2.3b.4)
2sh(2kh) 20 gh- (cg) 2 oh- (c,) 2
2 gkC ' gG,+C G
U=-BEs 8 a__ -2 gl (2.3b.5)

26 2sh(2kh) gh-(Cg)Z gh+(Cg)2

where G1 and G, are functions of £ , which emerged as a result of the
integration. Now, everaging eqs. (2.3b.2) and (2.3b.3) and substituting

(2.3b.4) and (2.3b.5) yields:

kC ——
[ - £ . (—&kh +g§)]a2 +
2sh(2kh) gh- (cg)2 2sh(2kh) 20
h G1+C G2
+gCg —_—Rc. o const3 (2.3b.6)
gh~(C_)?
g
kC —_— G,+C G
k _h 4 gkC, 8Gy+C.6y
[g“ - - (g + )] a2 + he __.E_.Z. = const, (2.3h.7)

where, consistent with the order of approximation k and o have been

replaced by k,w.

Following Stiassnie and Peregrine (1980) we assume zero averaged

~

mass flow {thus, const4=0) and choose such a reference level that h - h = 0

in deep water (which, in turn, sets const., =0). Having fixed these

3

two constants we solve eqs. (2.3b.6) and (2.3b.7) for G, and G2 and then

1
return to eqs.(2.3b.4), (2.3b.5) to obtain the final results for the

induced mean flow:




................

2 gkC -z _.2 —z
; - (Ek ., a -a _ gka
U8 = G~ + Ty gh-(C)? ~ 2uh (2.3b.8)
~ gkC -z 2 -
_ - gkh By, a8 - a° _ ka
E Consistent with our level of approximation we have
i -z—w-g— ;Z: s for modulated wave-trains
. aZ = ‘3— B = { (2.3b.10)
= g
- 0, for wave-packets

(2.3c) Nonlinear SchrBdinger Equation

To derive the NLS we reqrite eq. (2.3a.3) as follows

2a 3a _g'a® 3k _2a'a da _ga'a® 30 , a? 3c!
o

~ o -~

=0 (2.3c.1)

cd o 3 o 9 % 3x ax

Applying eq. (2.3a.4), which gives mutual cancellation of the

second and fourth terms in the above equation, and dividing by _:-_:
2afd  yields ;
. e o]

da  qv 33 add B

st 79 3x T 7 5k 0 (2.3¢.2) e

The Taylor series expansion of d(k) in the vicinity of k = k is. T
- -~ mn -~ 2 2 ‘_-‘_:J
c=u+ Cg -(k_—k) + E ¢« (k~k) +0 (e%) (2.3c. 3) o ~‘]
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Using this series we rewrite eq. (2.3c.2) as well as the dispersion

relation (2.3a.5):

- . aC

28, o3, ingpla,wadk-B 2’

atfcgax*'“’ (kk)ax+ 7 oy + T e 0 (2.3c.4)

. ) 2 2_w" 3% —

w=uw+ Cg (k - k) +-——-(k k)c + a,a’- E;-s;z +uza (2.3c.5)
where
a; and @, are given in section (2.3) by eqs. (2.2.13) and (2.2.14)
respectively.

Referring to eq. (2.3a.&) we define a phase function ‘¢ so

that

w-w=

a—Y , k- = (2.3c.6)

Substituting eqs. (2.3c.6) into (2.3c.4) and (2.3c.5) we obtain

aC

da da , w" , 3¢ a¥3a,, a

et Gty Gzt at e =0 (2.3¢.7)
N, 3@, w 39 1 3%a ) = .

3t * Cgax T 2 (G 2 3:2) T ¥ 3"+ o,a 0 (2.3c.8)

Multiplying eq. (2.3c.7) by the imaginary unit i, adding to it
(~a) times eq. (2.3c.8), and then multiplying the sum by ei‘? we get

aC ~ a" o~ ~ ~ ~
L&+ i(w +c, \p ) +3 2 Vo allw[?'lb = azZT Y (2.3¢.9)

2 3x
where @ = a ei is a complex wave envelope. Alternatively, using
the scaled coordinates (2.1.5) we obtain the N.L.S. equation

(2.2.12).




3. SOLUTIONS

In this chapter we solve the third order evolution equations
for two particular important cases. The relevant eqs. were derived

in chapter 2, and are given here again for the sake of clarity.

From the Laplace's equation (2.1.1) it follows that

2

e = -
¢10+'€z¢10 =0 h¢<zg0 (3.1)
zZ g TT
From the boundary condition at the bottom (2.1.2) we obtain
¢10 = 0’ z =-h (3-2)
The boundary conditions at z=0 are
2 g8 ~
2 a2 2y . =
410 * 5 10 il del>, 5 z=0 (3.3)
z T (same ase (2.2.2))
2
A RS WM
PR T A Y o A Ay ol A -
g g g
= (Byb1g *+ Bydpg) i z2=0 (3.4)
T g (same as (2.2.1))
where
3 2 L 6 .
. gk’ 9-12a° + 13a¢* - 29 3.5
By " 2% 8a3 3.3)
B 3.53 .cgﬂ_ + (1-g2)) (3.6)
2 2w kCg
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and

.
By = 5= (1-0%) (3.7

In section (3.1) we consider the case of periodical boundary
conditions, and present an approximate analytical solution for the
shoaling of wave groups over a very slowly varying topography. In
section (3.2) we consider the cage of infinitely deep water and

calculate the induced mean flow accompanying an envelope soliton.

(3.1) Shoaling of wave-groups

Restricting the discussion to cases for which the complex
wave envelope ;(T,E) is periodic in t , and assuming zero averaged
(over 1) mass flow in the x direction, enables the decoupling of
equations (3.3) and (3.4) (see Appendix A). For this case i is

governad by the nonlinear SchrBedinger equation (2.2.12):

2
i EE& - " c" . € a; - -
2—cg~35 w+iw£+zcg Voo - e pl2y =

[0} ~
—E—Z—E'Lazw

o

with a; and a, given by (2.2.13), and (2.2.14) respectively. The

induced mean flow potential is given by

e_ZWgC « - 2ning
o= - —pp—E— T ra@ib (e T+

n=1
~2rwint
+b_(@e ¥ +0,@® (3.1.1)
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where Y is the period of ¢(&,T1).

a = cosh(Zﬁen(z+h)/ng) n=1,2,...,; (3.1.2)
2 2
€ g 82
b = *C (3.1.3)
T2 2mng sinh(zwneh) - (Znn)z cosh(gEEEE) n
ngY CgY ng

and C are the Fourier coefficients of ([¢[2 )

T

2nint - 2nint

12y = ¥ Y Y
Qe[2)_= £ (g @eY +c_ (e (3.1.4)

n=1

The convergence of the Fourier series (3.1.4) was assumed to
be independent of € .
The potential ¢20 which 1is needed to calculate the mean
water level z,» see eq. (2.1.27) 1is given by
_2—,—gkC

= - |y]2 =2 (3.1.5)

¢20 Zoh

All technical details are given in Appendix 3.

A siwpler and dimensionless form of eq. (2.2.12) is obtained

by means of the transformations

o1 Wy —— ¥ aydx
b =€ (—Egg) vexp i ([p[2 f )3 (3.1.6)
x 8

@
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g
1 "
T= Ty X==2 [ 53 d (3.1.7)
- g..
which give
Loy + ¥ + ule[Zy =0, (3.1.8)
—g3C qul
u(g) =‘———a§aﬁ-— (3.1.9)
: The dimensionless parameter u is a monotonic increasing function of kh,
5 having the values zero and (wy)? for kh=1.363 and kh + =
i‘ respectively. The statement of the mathematical problem, given by
. Eq. (3.1.8), is completed by the following input condition at X = 0.
:- (i.e. x = x_; a reference point in infinitely deep water).
¥(T,0) = 1 + 28el%cos (2nT) (3.1.10)
which corresponds to a system composed of a carrier-wave and a
sympmetric "side-band" disturbance.
T(t,x) = ﬁ% Re{e-iwt+6e~i[(1+2we/wY)mt-a]+
+ gemil{-2me/umue-aly 4 2, (3.1.11)

For constant depth, u =

const, it is well-known that Eq. (3.1.8) with T

in (0,1), subject to periodic boundary conditions has the following RO
.‘. ~"_1
X invariants : g
1 . T.'::
3, = [ lvf?ar (3.1.12) R

o

1
3, = £ (Vg ~ V%) dT (3.1.13)

1
2
Iy = £ (fof*- Slog[Prar (3.1.14)
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These invariants are determined by the input condition, Eq. (3.9) so

that
= 2 . =
Jy =1+ 287 J, =0 (3.1.15)
Jy=1+ (4-P+2cos2a)*282 + 68" (3.1.16)
where
P = 8nl/u (3.1.17)

For varying depth, u = u(X), Jl and J2 remain invariant and are given by
(3.1.12), (3.1.13) and (3.1.15), (3.1.16), but J3 is a function of X

governed by the equation,

dJ3 Zux 1
® =7 f [WTIZdT (3.1.18)
o

(See Appendix 5).

(3.1a) Three-Waves systems

The solution of Eq. (3.1.8) can be expanded in a Fourier series

2uinT

Y(IT,X) = L Dn(X)e (3.1a.1)

nz—m
The boundary condition at X = 0, Eq. (3.1.10), gives D°(0)=l;
- —3 ia . = =
D1(0) = D_I(O) = Be Dn(O) D_n(O) 0 for n 3 2.
Stiassnie and Kroszynski (1982) truncated the above given series and

considered only three waves systems:

1
v(T,X) = L Dn(X)e
n=-1

Substituting Eq. (3.1a.2) into Eq. (3.1.8)yields the following system

2ninT (3.1a.2)

of ordinary differential equations:




P
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.dD
o 2 2 2047 <
12+ u[(lnol +4[nll )Do+201°§] 0, (3.1a.3)
le 2 2_ P 2
14+ u[(z[nol +3[n1[ - 5D, + Don] = 0. (3.1a.4)
Note that Eq. (3.1.13) yields D__1 = Dl'

For constant depth the system of Eqs. (3.1a.3), (3.1a.4) has
exact solutions in terms of Jacobian elliptic functions with periods
of order 1 in X which is summarized in Appendix B; for details see
Stiassnie and Kroszynski (1982). These solutions depend on the
invariants Jl, J3 and on the parameter u , which in turn depends on the
water depth h and on the modulation period y . For very mild depth
variations, where hx = o(l), we apply an asymptotic, WKB related
approach, assuming the local solution to be that of the constant

depth type and using Eq. (3.1.18) to determine J I and y are

3°

fixed by the input conditions and J,, 1s given through I(P) by:

3 ]
/4-P
1+, 22—
2.1n(—— T2
1 _//4—?
dl _  /P(4-P) 7P
@ VT 1 (ZPZ(A-P)Z ) (3.1a.5)
T e-D 1
(see Appendix 4), where
L) = 34(2) - 3] (3.1a.6)

The initial value of I, at X = 0, where P = Po is denoted by Io and

is given by

1= g2[282 + 4(1+cosZa)—2P0] (3.'a.7)
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Io’ as well as I(P) were assumed to be af o(l) throughout the rather
lengthy derivation of Eq. (3.1a.5). In all our examples we choose
vy = an-l) Po=2, corresponding to the fastest growth-rate of

the Benjamin~Feir instability.

(3.1b) Numerical Verification of the asymptotic solution

In order to appraise the relevance of the asymptotic solution
given in the previous section, we compare its results with those of
a numerical solution of the system of ordinary differential equationg

(3. la. 3) ’ (3- 1a. 4).

Fig. 1 shows I=I(P) for four initial values of IO=I(2)
(Io= -0.04, ~0.01, 0.04 and 0.1). The broken line represents the
asymptotic solution and was obtained by numerical integration of
Eq. (3.la.5). The solid line was obtained, by substitution of
the results obtained from a numerical solution of the system of
0.D.E. (3.1a.3),(3.1a.4) into the expression

I(P) = 2[1)1[2{Inl|2+2IDOIZ-P+2[DO[2cos[2(arg D,-arg D)1} (3.1b.1)

1

The numerical solution of the system of 0.D.E was ohtained

using a trapezoidal method and assuming the P(h(X)) = 2+0.2X.

.
-
.
~
.
-

.
Note that the assumption II[ <<], which is necessary for the i:;
N
asymptotic solution to the valid, imposes a restriction on the ;ijigi
Y
range of variation of P (P=2.8 corresponds to w?h/g=4). R 7*

Aok b b a




e T YT T Ty

In Fig. 2 we show three parts of the exterior gxoup envelope

|¢(0,X)[ as well as the interior group envelope |W(%,X)| for the

input conditions a = 0, B = 0.158 (Io = 0.1).

Here again, solid lines represent the numerical solution
of Eqs. (3.1a.3) (3.1la.4) with P = 240.2X while the broken lines

correspond to results obtained by the asymptotic method, utilizing

the relation:

[v(T,x)|% = {—ZI+2(4J1—P);—7;2+[S(ZI+2P;-;2);E +

+ 4zcos2nT]2}/8% (3.1b.2)

where z is given in Appendix B.

The thre parts shown in Fig. 2 are for P =2, 2.44, 2.75
for the asymptotic solution compared to P in (2,2.03), (2.44,2.49),
(2.75, 2.81) for the numerical solution of the 0.D.E respectively.
The agreement between the two methods of solution, as seen in both
the above figures is rather encouraging and seems to indicate the
validity of our new asymptotic solution of the system (3.1la.3)(3.1la.4)
Nevertheless, one still has to answer the question if, and to what

extent, the system (3.1la.3,4) itself is a reasonable substitute

for the N.L.S. equation. For constant depth Stiassnie and
Kroszynski (1982) show a good quantitative agreement in the length AR

of the modulation~demodulation cycle and only a qualitative

agreement for the amplitudes. A similar trend can be seen in Fig. 3, which

.
'y

compares to numerical solutions, for for the N.L.S. (3.1.8) - dotted

line, and the other for the system of 9.D.E. (3.1a,3,4) - solid line. ;igﬁi
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The input data in Fig. 3 {s ~ =0, 8 = 0.1 (I° = 0.04) and
the variation P = 2 + 0.2X is assumed; Both the exterior and interior

group envelopes are drawm.

We believe that our much-simplified asymptotic solution is not

over-simplified, and is able to produce quite a few results of
qualitative, and maybe even semi-quantitative relevance, which

enable us some new physical insight.

(3.1c) On P and T,

One fundamental propertv of the asymptotic solution is that
it depends on P and I0 solely. Given the input data a, B8 (and
Po=2), Io is determined by Eq. (3.la.7). Then, integrating Eq.
(3.1a.5) from Po to P the parameter I(P) is found, and the solution

given by Stiassnie and Kroszynski (1982), is locally applied.

Fig. 4 gives the relation between P and nondimensional
local water depth k _h, (where k_ = wZ/g is the wave-number in
21
infinitely deep water), for Yy = 2mw . P is a monotonic decreasing

function . having the values infinity at k_h = 1.195 (kh=1.363)

and 2 for k h ~ =, The input value Io’ (for Po=2) dependence
on o and B is shown in Fig. 5. .. Note that different combinations
of a and B give the same Io’ and thus basicly, the same soclution [

for any P.
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(3.1d) Group envelopes

The free-surface of an (unstable) shoaling wave-train, displays

three distinct length scales: &

1 - the wave length; &, - the modulation

2
or group length; and 13 - the modulation-demodulation, group-envelope,

or maybe best "supergroup' length. These three lengths are given by

2, = 2n/k (3.14.1)
22 = ZWE—ICg[m. (3.1d.2)
-2 3 .
4e “P(C)) 2P2 (4-P,2
L g In ———(ZP_I)il , (3.14.3)
w2w"VP (4-P)

see Fig. 7a .

It can easily be seen that in the range of depths where the asymptotic
solution applies, k h > 4, 21 and 22 remain almost constant. On the R
other hand, 13, which depends on P, exhibits quite a remarkable variation
as shown in Fig. 6. fi;i{”

In Fig. 3., we show the variation of £, as a function of the

3 S
depth k_h for four different input data Io=-0.04, -0.01, 0.04, 0.1, For

Io <0, L.4

increases with decreasing depth up to a

decreases with decreasing depth, but for Io >0 13

'critical depth" (corresponding

‘.“A

.
"y e

A

to I = 0) and from there on starts to decrease.

PR }

. B
. (LU

(Y

Fig. 7 shows the group envelopes (dashed line) and wave e

‘e
L.
.
'.

envelope (solid lines) at a fixed instant for € = 0.2, at the following

l'a.
I N
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four locations: (2) - infinitely deep water, Po =2, I0 = 0.1;

() k_h = 11.2, P = 2,2, T = 0.052; (c) k,h = 5.7, P = 2.45, I = 0.01;

(d) kh = 4.2, P = 2.75, I = -0.028.

In.Fig. 7a we have added a portion of the wavy-surface (thin
solid line) as well as the lengths_l@l,,l2 and 23. Note that the super-
groups (namely: the exterior and interior group envelopes) are fixed
in space, while the wave envelope moves with group~velocity and the
waves themselves with the phase velocity. Similar sketches to Fig. 7
were obtained for the other cases given in Fig. 6

In order to complete the picture for shallower water depth we

1

present in Fig. 8 . the group envelopes at five locations:

P = (2,2.05), b:(2.32, 2.63); c:(17.7, 22.8), d:(-22.4, -117.5),

30, Y Y
v e .

e: (-4.1,-3.9), as obtained from a numerical solution of the system

(4.3a,b) for the same input data as in Fig. 7 assuming n = 39.47-10X.

The results in Fig. 8 indicate that 23 continues to shorten ?iliﬁ

and that the intensity of modulation decreases.

(3.1e) The mean flow field

We express the mean flow U = a¢°/ax = -¥/3z, V= a¢°/az=awlax

through the stream function Y
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. y I | 3
=gk§€ 2 2 g’ye
¥ 4mw>h ([Dol +2lDll )z + 4w Cg

. QZ(D3D1+D°Df)Sh12(Z+H))cos(ZﬁT) +‘g2Yé-l .
B - 3
2“€cg sh(2H)~ch (2H) 4w Cg
82[Dl[zsh(4(z+ﬂ))cos(4wT)
. + constant (3.1e.1)

E%C: sh(4H)-2ch (4H)

where Z = nez/CgY , H = neh/CgY and Y = e_2m3W/g2 are dimensionless
quantities. The constant in Eq. (3.le.l) is chosen so that ¥ = 0
at the bottom. The mean free surface g, is given by Egs. (2.1.16)

and (2.1.27).

The stream—function Y(T,Z) as well as the mean free-surface
for cases a, b and d of Fig. 7 are presented in Figures 9 ,10. . and
il respectively. These figures demonstrate the rather complicated

structure of the wave induced mean flow field.

Some of the main features are: (i) the mean current, which
is shown in part (b) of the figures, as well as the mean free surface,
in part (¢) exhibit a somewhat cellular structure influenced by the
wave envelope variations; (ii) a dominant adverse current appears
underneath the high waves and a much weaker, positive current (in the
wave propagation direction)under the low waves, for the shallower cases
the positive currents almost disappears; (iii) the magnitude of the

maximum adverse currents at the free surface is almost the same for
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all three depths (k h = @, 11.2 and 4.2); (iv) one can notice the
tendency'of the flow fields to become more uniform in their lower parts
and on the sides of the supergroups (where the modulation amplitudes
get much smaller); (v) there is a set-down in the mean free surfaee
accompanying the peaks of the wave envelope and a smaller set-up

accompanying their troughs.

(3.2) The.induced flow accompanying an envelope soliton

We consider here the case of infinitely deep water. In this
case we assume that the induced mean flow ¢° is of order €2
(¢10 = 0(e); by0 = 0(e)). For infinitely deep water, system (3.1)

to (3.4) becomes:

2 -3

¢10 + %2— ¢10 = ( - <z <0 (3.2.1) ::
zZ g TT z
Lin ¢)) =0 (3.2.2) ‘
Zr—o z : 1
619 = k([q,[z)T ,z=0 (3.2.3) ".’-‘-‘."
z -1

~ 1~ -2 (X712 T ) -.-‘
-G - k [¥|2w=0, z=0 (3.2.4) C o]

Introducing the dimensionless variables

wT
T= 2
X = ki
(302.5)
Z = ¢kz
~ kz k ~
Z(: 10°* b = c 14

|
!

(
-
-‘“‘
od
..‘.
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- Naote that X, T, Z and ¥ in the present section are slighly different

from their previous definitionm.

~ System (3.2.1) to (3.2.4) becomes

@,y + G = 0 (3.2.6)
lim ¢ =0 (3.2.7)
o Z

¢z =%(v[?y, Z=0 (3.2.8)
lpTT
W +—=+ [v[2v= 0, 72 =0 (3.2.9)

One well-known solution of equation (3.2.9) which decays at T = %=

(x = ¥w ) 1is the envelope soliton, given by:

V(X,T) = sech(v2 T) 1¥/2 (3.2.10)
Substituting (3.2.10) in (3.2.8) ylelds
iz - 15% {sech2(VZT)} , z=0 (3.2.11)

Equations (3.2.6), (3.2.7) and (3.2.11) define a Neumann problem
in the lower half plane, which was solved utilizing the Fourier transform

method, with the following result.

o

t=TEC (z~a_) [[12+(2-a )22 (3.2.12)
=0

where

o =—= (gn) (3.2.13)
/2
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All technical details are given in appendix 6. Let U and V be the
induced mean flow velocity components in the directions x and z respectively.

From (3.2.12) and (3.2.5) it follows

ws= - &y [(z-a )2 -312] /[124(z-5)2]3 (3.2.14)
vl -1 = [12-3(z-a_)21/[T2+(z-a_)2]3 (3.2.15)

The dimensionless stream function is given by

. 2 w T2 (z-mn',2
¥(x,2) mor¥ =4k I —— (3.2.16)
=0 [Tz+(2—an)2]2

-]

Note that L On 2 = 1 and that the first term on the r.h.s. of
n=0
eq. (3.2.16) was chosen to render ¥(0,0) = 0. The streamlines of the induced
mean flow field are shown in Fig. 12, the total flux, per unit width,

involved in this flow is given by

q= ¥(=,0) - ¥(0,0) =% € ¥ (3.2.17)

This value is equal to the Stokesian mass transport at the peak

of the wave packet, as it should be.
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4. CONCLUDING REMARKS RO

The main result of the present study is the development

of an analytical solution which is able to provide detailed
information about the physical quantities involved in the

shoaling of wave groups.

The quantities include: the variations of the mean free
surface (also called set-up and set-down); the induced
mean flow; and the supergroups (group of groups) which to our

knowledge have not been discussed in the past.

The improvement in our understanding of the above mentioned
quantities is of practical importance since it is believed that
é
they are related with such phenomena as surf-beats, longshore :

cellular structure and Harbour resonance.
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Appendix A: Decoupling of eqs. (3.3), (3.4) for periodical boundary

conditions

If ¢ and ¢10 are periodical of period Y, the solution of (3.1)
to (3.7) is given by:

e = e

where a, is given by (2.2.14).

w 27int
b10(6:Ts2) = QBT+ Q) + I 2 @b (e v+
-2nint
+b_ (e Y 1} (A.2)

Substituting (A.2) in (3.1), and using the b.c. (3.2) yields

en-2w (n+h)
a = cosh[——~E;;———-] , n=12,... (A.3)
(same as (3.1.2))

From (A.3) and the b.c. (3.3) we obtain

b_(£) = e 25382 % (A.4)
n 2w ngZ'lr Sh[ZWEnfl]_[Z_WE]I:oSh[ZWnGh]
ngY ng Y ng (same as (3.1.3))

where C_(g) are the Fourier coefficients of [@[% :

- 2rint :_2_1(_1_11_1_
[v[2 = = {c_(ge Yo+ (e Yoy _(6) < 0(e2))  (A.S)
© o=l (Same as (3.1.4))
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Substituting (A.3) and (A.4) in (A.2) and differentiating twice

with respect to T yields:

2TinT -2WinT
o 223 {c e ¥ +c (e Y
¢ = I 2 n ~n (A 6)
10, n=l 2 1 - B p[Ameh '
z=0 Zﬁnecg Ca
Thus from (A.5) and (A.6) follows the relation
o 2wint ~2ninTt
¢ =T [blz + I (r_-r)){c_(&)e Y 45¢c e Y 3} A.7)
10 1 n 1’"""n -n ’
T T n=2
z=0
where _2
€ 3282
r, = (A.8)
1 Yg eh2r
20 (1 - 58— [£ Y 1)
g 4
6-25282
r, = , n=2,3,... (A.9)

20(1- e th[élf—e-‘l])

It can be easily seen that Tn—Fl < O(EZ) for all n. On the other

hand Cn(a) are Fourier coefficients. Thus there exists a M, such that

- 2mrinT -2nint

£ {c(e)e ¥ 4c_()e ¥V )<l
n=N

(A.10)
and then
2rint -2tint

L (fn—Fl) { Ce +C_e } < 0(e)

n=N
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For n < N:

-1
[ - < 0() (A.11)

From (A.7), (A.10) and (A.11) we finally obtain the relation

. ) o
b10__ rylel2 + o) (A.12)
z=0
And using the relation
-2 2
€ &R -1

r 0¢e ) (A.13)

-
L@ - £
g

which can be easily verified, we obtain

= r[‘-l;liq- 0(e) (A, 14)

%10
A z=0

where -2
€ gzﬁz

I =
2 (1 - %2)
g

(A.15)

Equation (A.14) is identical to (2.2.4) (A = EﬁE @ ), which
was obtained for the case of shallow water. Integrating (A.14) with

respect to T yields

= ]2 + Q&) + O(e) (A.16)

%10
T lz=0

From here we proceed in a similar way as in section (2.2) and

obtain that Q(£&) is given by (2.2.8), 920 by (2.2.11), and QI(E) = ¢20(E).
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Finally substituting ¢10 , Q(E) and ézo in (3.4) we ohtain
: T
that the wave envelope Y(£,Z) is governed by the nonlinear SchrHedinger

equation (2.2.12).

£ EES“ . c . e-za, ~ e—zaz—:—é~
'z_cg g v T b + zcg§ o™ c lo[2e = ¢ lo]2w

where a; and a, are given by (2.2.13) and (2.2.14) respectively.

For deep water (ch >> YCg), eqs. (A.8) and (A.9) become

e—lgzaznc
= e —_t B
FI proos (A.17)
and _
€ gZBZNnC
I =- (A.18)
n wYg
regspectively, and one can easily verify that ¢10 = 0(e).

z=0
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Appendix B - Solution of Equations (3.1a.3) and (3.la.4) for constant depth

Input data: J., J

1 73

141

I =J3,-J

min(cl,cz)

2
5 (4-P)

.1
¢ = 7 (4J1—P){1—[1-(ZEI:§721 }
~ _ 2L.%
c, =p[1 (1+ =2) ]
c = max(El,Ez);
e = 2P;
2 _ 1 - e-b , c-d
r e b
22 v7eb * X

(B.1)

(B.2)

(B.3a,b)

(B.3c,d)

(B.4)

(B.5)

cd(y,r) is a Jacobian elliptic function of the argument v with modulus r.

P eb(l—cdz)
e—b*cd?

lDll = Vz/2 ;

b

cos[2(arg D,-arg Do)] =

o |= /7,2

1

L-1,52%2 +(P-2Jy) * Z

zE(Jl-E)

(B.6)

(B.7a,b)

(R.7¢,d)




P P T e T TR ———

-48-

Appendix C ~ Derivation of the Equation for J3(X)

Let us suppose that u is a given function of X. Differentiating
equation (3.1.8) with respect to T and multiplying by wT* we obtain

ay
g ai + g SE? bp + w102 vp ]2 + uewwxlu|2=0 (.1

Subtracting from (C.l) its complex conjugate and dividing the result

by u(X) yields

2
g 2l L1 2
u(X) X u(X) 9T

bbb+ (W[ 2 Gug-vryr) = 0 (c.2)

Multiplying equation (3.1.8) by ¥*, taking the complex conjugate

and substracting it from the resulting expression, we obtain

3% W12+ 32 Gpvs-vaw) = 0 ©.3)
Multiplying (C.3) by {¢|? yields
L g2 penvae) - (. 4)

Subtracting (C.4) from (C.2) gives

I S NN it | 2 (V=¥ ¥ip)
uX) x '"r' 2 X T u ()

+[v]2 (urv-v ¥ =0 (c.5)

which can be written as

vol? iy |2’ (&P, =V bE)
2 AT T TIPS e v A A ¥
{ —= (x) L w4} + —r— 57 { "
+ ‘w[Z(w¥w_wTw*)} =0 (C.6)
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Integrating (C.6) with respect to T from 0 to 1, and using the

fact that ¥ is periodic, with period 1 we obtain:

2
1wl

3 [w]* ut ol 23m _
5% {£ [W-T'—]dT} +F£ [w (24T = 0 (€.7)

which can be written as:
3 2ut L 2
3x 13X ==z [ v [%a1 (c.8)
o

1
- 4_ 2 2
where J,(X) £ (|v] o) v [?)ar.

Substituting the approximate solution (3.la.2) into the right

hand side of (C.8) we obtain the following approximate equation for I3

3J3(X)
ax

= 81‘.2 _E; ;(X) (C.9)

where ;(X) = 2|D1[2.

Integrating eq. (C.9) yields

v -~ v
J,(X) = 3,(0) + gn2f* %-[ 2(X)dX = J,(0) + gn2 _1%& du (C.10)
o ¥y
and using (3.1.17) one finally obtains
P ~
J3(B(X) = I5(P) - [ z(p)ar (C.11)

P
o
Equation (C.11) is an integral equation for JS(P)' If we suppose that
J3(P(X)) varies in such a way that J%-J3<<l, then z(P) may be replaced by

the solution for constant depth (B.6) so that
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2
= P 2P(4-P)(1-cd”)
J4(B) = J5(2) - PI Gy 4P (C.12)
o

where cd is the Jacobian ellyptic function with argument

y = -4w2[$5§313% X (C.13)

and modulus r given by

2 _ (e~b) (e-d) _ (4P-2) 2 2.2
r =1 - _—_—ETfi——— =1-4 52?2:532'(J3-J1) + 0(J3—J1) (C.14)

e,b,c, and d are given in Appendix B.

After some algebra, ahd using the relations

cd = %%

en? = 1-sn? (C.15)
dn2 = l-rzsn2

r'2 = 1-r2

where cn, dn and sn are Jacobian ellyptic functions, equation (C.12)

is written in the form

P eb'r‘2 sn2
= - 1
J4(B) = J5(P ) Pf S 1_qzsnz)dp (C.16)
where °
2 =1 - 1E§9L (€.17)

The integrand in (C.16)is an oscillatory function of the argument vy,
and if we again apply the very mild topography assumption, it is justified

to replace it by its average as follows

(ebzr'z . sn? ) = 1 [K (r')%eb sn? dv =
e-b 1-qsn* K b 1-q?snZ &

. (r')zeb K SnZ(Z) dy _ (r')%eb ZJ(P,T)
(e-b) T-q%sn’(y) et /T EgD)

(C.18)

T Y- vl w oW wow,




where 4K(P) is the period of the sn Jacobian ellyptic function,

ZJ(p,r) is the Jacobian Zeta function and

P =sin ' (c.19)

In order to obtain (C,18), equation (414.02) from Byrd and

Friedman (1971) was used.

Substituting (C.18), into (C.16) ome obtains, after some algebra

P
J3(R) = J4(,)- Pj Yeb J4(p,r)dP (c.20)
(o]
or
33,
3 = -/eb ZJ(p,r) (c.21)
where
sin?p = 1 - 7:6 + 0(82) (C.22)
2= {1- &";—2—)- 5} (C.23)
4 2
§ = (c~d) =m (J3—Jl) << 1 (C.24)

Finally, using the fact that sinzp = 1+0(8), and r2=1+0(6), we

replace ZJ(p,r) in (C.21) by a simpler expression as follows.
The function ZJ(p,r) is defined by
Z;(p,r) = E(p,1) -% *F(p,r) (c.25)

Here %, K, E(p,r) and F(p,r) are the Ellyptic Integrals. (See Byrd

and Friedman (1971)).
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Using the following limiting values
lim E(p,k) = E(k)

sing+1

lim E(r) =1

r2+1

the function ZJ(p,r) is approximated by

Z (p,xr) = 1 - ERar)  KF(p,r) £ Flw/2,5)-F(p,r) _ F(Q,r)

K K K
where
~ _ AN X T . - T
Q = cos 1 ( sinp V(1-r%) (1~r“sin p)}=cos 1 /l-r

1-rsin‘p Y T-rZsinp

see Byrd and Friedman (1971) Eq. (116.01).

From (C.22) and (C.23) we obtain

UsingEq. (90201)on page 300, in Byrd and Friedman (1971) yields

/b
1+
1+s1n¥ 2 Ve 2
F(?, ) = In——=) + 0(r'“) = %lnG———7”—9 + 0(r'%)
cos ¥ 1-—/e

Finally, replacing K by its approximate value

= ln(;é), r

R
—t

(C.26)

(c.27)

(C.28)

(c.29)

(C.30)

(c.31)

(C.32)

(see 112.01 page 11, Byrd and Friedman (1971), we obtain from (C.28),

(C.31) and (C.32) the following equation for J,(P):

(c.33)
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The above equation is writtem, using (B.3) as

/(4-P)
L+/ 7%

In( )
/[ (4~P)
31, (P) — 1 - fAA)
3 _ /P . v 7P
5 =~ 2/ 74P | 2GR (€.34)
(2p-1) (35 (B)-T7)
Finally, introducing
I(R) = J,() - 3,2 (C. 35)
/ (4=P)
1+
21n( /T
3 T - R
IC®) __ [P by o — 7P C.36
® J3e-p) 34-7)2 (c.36)

Bl 2p-1I(P) |

* .
- ' . e
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Appendix D - Solution of the Neumann problem (3.2.6), (3.2.7), (3.2.11)

We consider the problem

®zz-+ @TT =0 (3.2.6)
im & =0 (3.2.7)
VAR Z

P 2 ¥ (/2

028313? {secf (v2 T)},. z =0 (3.2.11)

Equation (3.2.6) with the boundary conditions (3.2.7) and (3.2.11)

constitute a Neumann problem, which is solved for the induced flow,

Substituting the following Fourier Transform of the induced flow

potential function

oo
1 I eiXT‘&

2 -

£(\,2) = X,T,Z) dT ®.1)

Into (3.2.6), (3.2.7) and (3.2.11l) yields

£,,(A, 2) A2£(0,2) =0 ~0 <2 <0 (D.2)

1 P oaars
—— e

£_(1,0) = sech?v2T] dT Z=0 (D.3)
27 - oT ’

lim fz(A,Z) =0 (D.4)
Zr—x

The solution of (D.2), (D.3), (D.4) is given by

[A[Z 4 ey

e _£ e T [secthETE dr (D.5)

£,(A,2) =
z 2/2rm
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Then, by means of the inverse Fourier Transform, we obtain

f+°°e-1xr rlz j"‘”enr 3

. ' 1
¢, (X,T,2) = 4 Fre [ sech?/21] drda =

-—00 -0

1 4
= 47 %?'(sechz/if)[ / eiX(TTT)+[X[de] dr (D.6°,
-0 -l
The integral in the square brackets can be evaluated, as a sum of two

integrals, from =~ to 0, and from 0 to » , yielding the result
+oo
1

- = 7z 3 2 A (0.7)
QZ(X,T,Z) - 2n Im T;-_—T)-zrz-z aT[Sec."L \/f‘t] dr
Finally, integration with respect to Z gives
P y 2,727.2 2
¢(XT,2) = =47 { In[(t-T)242 ]°—a—1:[sech V2<]dt+ Q(X,T) (D.8)
-0
From equation (3.2.6) it follows that
Q(X,T) = a(X)T + Ww(X) (D.9)
and imposing the condition
lim ¢, = 0 (D.10)
T+t
yilelds that Q is only function of X.
Q = W(X) (p.11)

On the other hand, replacing 1 (D.8) by the new variable

1-T, and integrating twice by parts, yields the result
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~ +°°2-2
¢ (x,T,2) =~%% f f%z;éz%z tgh[V2(~+1)] ar (p.12)

The integral in (D.12) is evaluated by considering the complex
variable n=T+if and the path PR given in figure below. The integrand

has the following infinite number of poles in the upper half plane.

n, = iZ(Double) (0.13)
zj = -T + j—; (GeH1), j=0,1,2,... (D.13)

The path PR is taken between two poles, as shown in the figure
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The integral along the half circle tends to zero when R -+ o
and after some algebra we obtain the result:
22 - 22

®(X,T,Z) = %—2- {sech2[VZ{1-12)] +% N s SR (D. 14)
§=0 (z§+zz)2

where Zj is given by (D.13)

From the identity

2 - 1
gsech‘y = -1 (D.15)
k=—e[z+ im (gtk)]2

(See eq. (3.64) in Carrier et al. (1966)), we obtain the final result
e2r{z- = ()}

;(X.T.Z) = & - + W(X) (D.16)
k=0 [T2 + {z-/: Gstk) 12]2
2
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Figure 7

The group envelope (---~) and wave envelope ( ) at t=constant for
P =2, I,=0.1, e= 0.2 at k_h=(a)=, (b) 11.2, (c) 5.7 and(d) 4.2.
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